

2020 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY
SYMPOSIUM

CYBER TECHNICAL SESSION
AUGUST 11-13, 2020 - NOVI, MICHIGAN

Performance Impacts from the seL4 Hypervisor

Jesse Millwood1, Robert VanVossen1, Leonard Elliott2

1DornerWorks, Grand Rapids, MI
2 CCDC-GVSC, Warren, MI

ABSTRACT

Hypervisor technologies are often presented as offering a high degree of
separation at the cost of performance. Is this too expensive for embedded systems?
The cost of performance has been shrinking year after year as new advancements
in virtualization technologies are baked into processors. When a hypervisor couples
hardware assisted virtualization with device emulation, it makes current systems
portable, future proof, and extends the life of legacy systems.

seL4 is a perfect fit for the high assurance embedded hypervisor space. The
open source seL4 microkernel is the first formally verified microkernel built with
security and performance in mind. The mathematical proof of seL4 provides
unprecedented assurance at the lowest, most critical software level.

This paper investigates the overheads associated with using seL4 as a
hypervisor on ARM and x86 platforms, providing synthetic and real-world
benchmarking methodology and results.

Disclaimer: Reference herein to any specific commercial company, product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or the Department
of the Army (DoA). The opinions of the authors expressed herein do not necessarily state or reflect
those of the United States Government or the DoA, and shall not be used for advertising or product
endorsement purposes.

Citation: J. Millwood, R. VanVossen, L. Elliott, “Performance Impacts from the seL4
Hypervisor”, In Proceedings of the Ground Vehicle Systems Engineering and Technology
Symposium (GVSETS), NDIA, Novi, MI, Aug. 13-15, 2020.

 INTRODUCTION
United States Department of Defense

(DoD) programs continue to leverage and
expand the use of hypervisor technologies to

harden all manner of computer systems
ranging from enterprise platforms down to
embedded cyber-physical systems. The
ability to isolate software components and
partition functionality supports fundamental
principles for improving the security of a
system and has the added benefit of enabling

——————————————————
DISTRIBUTION A. Approved for public
release; distribution unlimited.
OPSEC #4290

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Performance Impacts from the seL4 Hypervisor, Millwood, et al.
Page 2 of 11

DISTRIBUTION A. Approved for public release; distribution unlimited. OPSEC# 4290

hardware consolidation. Hypervisors serve a
foundational role for accomplishing this
while underpinning a defense-in-depth
approach, and although there is a
performance penalty incurred with the use of
hypervisors, modern processor architectures
are incrementally minimizing this overhead
and decreasing the impact on the user.

 DoD weapon system programs are
increasingly looking to improve the
robustness of their cyber-physical systems. A
recent report by the Government
Accountability Office [1] [2] indicates that
this is of the utmost importance.
Traditionally the deployment of embedded
hypervisors in cyber-physical systems has
been approached through the acquisition of
prohibitively expensive proprietary
embedded hypervisors or microkernels, and
corresponding certification artifacts, on a per
project basis. Procurement of proprietary
embedded hypervisors and microkernels
results in vendor-lock and, despite similar
system requirements, typically does not
permit DoD agencies to reuse their
investments. In the case of ground vehicles,
and likely for many other applications, the
cost of embedded hypervisors inhibits many
commercial and military systems from
leveraging them simply because they do not
have the budget to procure these specialized
products. The use of embedded hypervisors
remains reserved for specialized applications,
such as in aerospace, where the cost can be
justified.

 The genesis of the seL4 kernel and the co-
developed mathematical proofs of
correctness [3] represent a rare, and
potentially unparalleled opportunity, for
commercial and military systems to achieve
levels of robustness that until now was
unattainable. A secure hypervisor is the
product of combining the seL4 kernel and the
CAmkES Virtual Machine Monitor (VMM).
When compared with proprietary offerings,
the seL4 based CAmkES VMM is open-

source, built on a kernel that claims to be “the
world’s most secure OS” [4] freely providing
formal proofs which are potentially stronger
than those provided in proprietary offerings,
and also claims to be the “the world’s fastest
microkernel.” This combination of attributes
makes seL4 a candidate for improving the
security posture of not just military
components, but commercial products
including Internet-of-Things (IoT)
appliances, medical devices, and critical
infrastructure components to name just a few.
The open-source nature of seL4, while
prompting special consideration due to the
sensitive applications that are targeted, may
enable reuse and sharing between projects in
a way that is not usually achievable with
proprietary products. The openly published
and peer-reviewed proofs of correctness
guarantee the absence of bugs in the formally
verified components and can be used to
support system certification against the
highest level of rigor including the Common
Criteria for security, DO-178C for airborne
systems, IEC 62304 for medical device
software, and IEC 61508 and ISO-26262 for
road vehicle safety. This picture is in stark
contrast with proprietary offerings which
typically charge additional fees for
certification artifacts before much can even
be ascertained about the nature of the
guarantees they provide.

Recent work has examined the suitability of
using seL4 in ground vehicle systems [2] [5].
Work has been done to port seL4 to
ruggedized hardware and develop the
necessary features which range from specific
guest support to virtualized drivers. The
presented work has never analytically
examined the performance impacts of
running the seL4 hypervisor in such a system,
instead relying on preconceived notions,
subjective measures such as user-
acceptability testing, and qualitative
assessments of performance inferred from
virtualization trends in hardware architecture,

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Performance Impacts from the seL4 Hypervisor, Millwood, et al.
Page 3 of 11

DISTRIBUTION A. Approved for public release; distribution unlimited. OPSEC# 4290

and known characteristics of the seL4 kernel
and CAmkES VMM hypervisor itself. It is
the objective of this paper to present a
quantitative analysis of the seL4 hypervisor
performance overhead that we conducted on
a commercial ARM embedded device and a
representative, military-grade embedded
device. We will also discuss potential impacts
on cyber-physical system development.

 HYPERVISOR BACKGROUND
 In the last decade hypervisors have

proliferated to the level of a commodity
product in the enterprise space and
hypervisor technology stands as one of the
foundational elements for the explosion and
success of cloud-computing. The hypervisor
provides the ability to virtually partition
hardware and software resources so that
businesses no longer require dedicated
hardware and can take advantage of the
economies of scale offered by the cloud
computing providers. The abstraction and
isolation enabled by hypervisor technology
has matured to the degree that rival
businesses can happily be running mission
critical software on the same cloud server.
Although there are indeed major differences
between an enterprise system and a weapons
platform, there are many similarities in the
design patterns and benefits that we seek to
achieve by applying hypervisor technology in
a weapon system. For this reason, it is useful
to discuss hypervisors in a general context
and how it relates to what we refer to as an
“embedded hypervisor.”

2.1. Hypervisors

Hypervisors are fundamentally a layer of
software that enables multiple guest
operating systems or processes to run
alongside each other and share the same
hardware resources. The hypervisor,
sometimes called a Virtual Machine Monitor
(VMM), manages the guest virtual machines
(VM) and provides an interface between the

VMs and the host hardware. There are two
broadly recognized types of hypervisors and
we will introduce a third type, to which we
consider an seL4-based system to belong.

 Type-1 Hypervisor
Also known as bare-metal hypervisors,

Type 1 hypervisors are relatively small pieces
of software that generally do not comprise of
a fully functional operating system by
themselves. They are usually more efficient
because they have direct access to the
hardware, however they often need a separate
VM or privileged process integrated to
monitor and manage the guests.

 Type-2 Hypervisor
Sometimes referred to as a “hosted”

hypervisor, Type 2 hypervisors run as an
application within the hosting Operating
System (OS). Type 2 hypervisors are
generally easier to use and deploy, however
they access the underlying hardware
resources through the host OS and so can
suffer performance problems and have the
potential to be compromised by
vulnerabilities that are inherited from the
larger, more feature rich, host OS.

 Embedded Hypervisor
This type of hypervisor is less widely

recognized and is generally a subset or
customization of the Type 1 hypervisor.
Embedded hypervisors may be used to host
specialized guests such as Real-Time
Operating Systems (RTOS) and an example
configuration is depicted in Figure 1.

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Performance Impacts from the seL4 Hypervisor, Millwood, et al.
Page 4 of 11

DISTRIBUTION A. Approved for public release; distribution unlimited. OPSEC# 4290

Figure 1: Typical Type-1 Embedded Hypervisor

Embedded hypervisors are specially
tailored for security and performance in real-
time applications. They often need to provide
hard real-time determinism to the processes
they run with worst-case execution time
guarantees. They may lack some features
that are baked into enterprise server
hypervisors in an attempt to shrink attack
surfaces and keep the code small and
efficient. We will also assert, in the context
of this paper, that this type of hypervisor must
be small enough, in source lines of code
(SLOC), that it is feasible to assess fitness for
purpose to host applications that require high
levels of robustness for safety and security.

2.2 seL4 VMM

While seL4 is a microkernel whose main
purpose is to manage memory, interrupts,
application threads, and system calls; it also
provides some interfaces to support running
VMs. The majority of the code needed for
virtualization is implemented in user-space
and is called the VMM. This initializes
memory and capabilities for the VM and
provides handlers for various expected faults,
such as emulated device drivers. The seL4
microkernel does need some code specific to
running VMs, which can be configured at
build time. The user-space VMM code was
originally implemented as a regular seL4
application. More recently, it has been re-
implemented as a series of CAmkES
components by Data61 [6] [7]. DornerWorks
has added support for the ZCU102 and 64-bit
x86 military-grade board with the intent of

contributing upstream. It is important to note
that the seL4 VMM implementations used in
this study contain code in performance
critical areas that DornerWorks developed for
the porting effort.

 CAmkES Background
CAmkES is the Component Architecture

for Micro-Kernel-based Embedded Systems
[8]. Developing simple applications on top of
the seL4 microkernel is somewhat straight-
forward; however, as the size of the
application becomes larger, the complexity of
developing on top of seL4 increases
exponentially. The CAmkES framework
allows developers to focus on functionality
without being bogged down by the specifics
of seL4 and its APIs.

CAmkES supplies a component-based
framework by providing an Architecture
Description Language (ADL) to describe
software components and the interfaces
between them. The seL4 microkernel
guarantees these components are isolated
from each-other; the only methods to
communicate between them consist of user-
defined interfaces and shared memory.
During compilation, the CAmkES tool
generates initialization code and the glue
code required to tie the components together
into a functional system built on seL4 without
having to directly use any of the seL4 APIs.
When developing a system without
CAmkES, a root thread is developed that is
given access to all of the resources in the
system. Using system calls, the root thread
creates and configures other user-space
threads. It then splits up access to hardware
resources to those threads and configures
connections between them. Fault handlers are
then setup and the threads are started. When
developing with CAmkES, all of this is done
with the CapDL Loader application. This
application is a root thread that takes the
CapDL [9] generated output from the
CAmkES configuration to setup the system.

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Performance Impacts from the seL4 Hypervisor, Millwood, et al.
Page 5 of 11

DISTRIBUTION A. Approved for public release; distribution unlimited. OPSEC# 4290

Using CAmkES for the user-space, VMM
implementation makes sense because of the
inherent modularity. A VMM just needs to
supply the same features for almost all VMs
and then it is up to each specific VM what
applications it runs and how it uses them. It
also makes it easier to add and remove
features like servers and companion
applications.

 seL4 VMM Architecture
Due to differences in architecture, the

VMM uses different library functions and
methods to provide virtualization support on
both ARM and x86.

On ARM, the hardware virtualization
extensions and Exception Levels (EL) are
utilized to provide most of the functionality
that the VM needs. The hardware
virtualization extensions provide features
such as, multi-staged Memory-Management
Unit (MMU) support, virtualized interrupt
registers, virtualized system timer, hypercall
support, and EL-based fault handling. This
provides all of the low-level platform support
needed to get a virtual machine running
correctly. The system runs in components in
different exception levels, as shown in Figure
1.

Figure 2:CAmkES-based VMM on ARM

On x86, VT-x is utilized to accomplish the
same goals. Extended Page Tables (EPT),
virtualized interrupts (APICv), IOMMU, and
Peripheral Component Interconnect (PCI)
pass-through and emulation are all used to
provide what is needed for a VM.

For either platform, some devices need to be
virtualized with software or passed-through.
Serial devices are generally virtualized since
one is likely to run more VMs than the
number of available physical UARTs. This is
done by trap and emulate. The memory
regions related to the device are marked for
no access. When the VM tries to read or write
from it, a fault is generated. The seL4
hypervisor catches this fault and branches to
the correct handler in the VMM thread. This
handler interfaces with a server that interacts
with the device on the VM’s behalf. The way
that these devices are defined for the VM is
different between architectures. On x86, the
virtualized device is enumerated to the PCI
bus so that it can be discovered by the VM.
On ARM, the device needs to be added to the
device tree that is compiled and provided on
boot to the VM.

On both platforms, hardware virtualization
is used whenever possible as it will provide
the best performance possible. When it isn’t
feasible to use hardware virtualization, such
as virtualized devices, software virtualization
is used to give the functionality that is needed
at the cost of a performance hit.

3 METHODOLOGY

Several benchmark suites were used in
this study to shed light on the performance
overhead of utilizing specific resources in a
virtualized environment. Performance
overhead is calculated as shown in Equation
(1).

𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑒𝑒𝑒𝑒 = 𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣−𝑃𝑃𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣𝑛𝑛

𝑃𝑃𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣𝑛𝑛
∗ 100% (1)

 Here, the performance overhead is

calculated relative to the baseline, native, and
performance. Performance here can be any
measurement.

A Linux image was generated for each
platform. The same Linux image was used for
the native benchmarks as well as the
virtualized one. PetaLinux 2019.2 [10] and a

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Performance Impacts from the seL4 Hypervisor, Millwood, et al.
Page 6 of 11

DISTRIBUTION A. Approved for public release; distribution unlimited. OPSEC# 4290

CentOS derived Linux distribution were used
to build and install reproducible images that
contained the same benchmark software. The
two images ran different Linux kernels. The
PetaLinux image and the CentOS derived
image used for this study ran different
versions of Linux kernels. The differences in
kernel versions is not of concern here since
advanced features of Linux are not being
used and the overhead introduced by the
hypervisor is the real focus of our
measurement. Due to hardware and software
architectural differences, the actual measure
of impacts between architectures are not what
is of interest in this paper. This paper uses a
ratio between the native performance and the
delay incurred in the virtualized environment
so that fairer comparisons can be made. For
each platform, one CPU is virtualized per
VMM.

3.1 Benchmarking Setup

The chosen platforms to perform
benchmarks on were:

• 64-bit x86 Military-Grade Single
Board Computer

• ZCU102 [11]
o Manufacturer: Xilinx
o SoC: ZU9EG

These platforms were chosen because they
are powerful embedded platforms that could
be used as development environments for
military applications. No consideration was
made to equate these boards in any way, such
as clock-scaling or any other processor
configuration. The minimal configurations
that were performed on the boards were to
support virtualization, otherwise they were
used out of the box. The x86 board’s BIOS
was configured to enable VT-X extensions.

The boards were both connected to a
computer via a Prolific serial-to-USB cable.
The majority of interaction with the boards
happened over this interface such as issuing
terminal commands and collecting data.

Besides flash memory, no other instruments
or interfaces were used.

The x86 processor used had multiple cores
and multiple threads, however only a single
core was used. A CentOS-derived Linux
distribution was used on the military grade
x86 platform. Since the Linux is an RPM
based distribution, the YUM package
manager was used to install the benchmark
software. This was booted with a Syslinux
configured USB device, which held the
images for the virtualized and native Linux
systems. Syslinux menu entries were then
used so that the operator could choose which
system to boot into. The power to the system
was reset in order to switch between running
the native and virtualized.

The ARM Xilinx PetaLinux framework
produced a BOOT.bin file, which contains a
first stage boot loader (FSBL), U-Boot, and a
bitstream. The ZCU102 board was booted
with an SD card that contained the
BOOT.bin, the virtualized Linux system, and
the native one. Once the ZCU102 booted to
the U-Boot prompt, commands were used to
load the images to the proper memory
locations and to jump there. The ZCU102
also required a power reset to run the other
image. The ZCU102 has 4 ARM Cortex-
A53’s and dual Cortex-R5F’s, however, a
single A53 was used in this study. The FPGA
fabric on the ZCU102 allowed connecting
GPIO pins together in the fabric to facilitate
simple and accurate interrupt latency
measurements.

3.2 Benchmark Suites

Synthetic benchmarks were used here in
order to target specific system resources. This
allows us to have a more accurate idea of
system impacts when running in a virtual
machine. These benchmarks run workloads
that otherwise do not have a useful outcome
in the real world other than causing increased
usage of a particular system component.

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Performance Impacts from the seL4 Hypervisor, Millwood, et al.
Page 7 of 11

DISTRIBUTION A. Approved for public release; distribution unlimited. OPSEC# 4290

Several synthetic benchmarks were chosen to
offer comparable performance numbers.

The Sysbench [12] benchmark suite offers
some resource targeting synthetic workloads
that are very useful for these comparisons.
The benchmark sub programs that were used
in this study were:

• CPU: Verifies prime numbers
through division of the number
between 2 and the square root of the
number.

• Memory: Read and writes to an
allocated buffer multiple times.

• Threads: A number of threads are
moved through the run queue by
locking their mutex and yielding.

• Mutex: Takes a mutex, increments a
global number, and releases.

The Sysbench suite has more workloads
available but these were chosen so that the
impact to resources could be compared.

MiBench [13] is a “free, commercially
representative embedded benchmark suite”
that has been put together by the University
of Michigan. This is not so much a synthetic
benchmarking suite as it uses real programs
to produce real workloads. It is meant to be
used in a simulated environment in order to
provide validation to microarchitectures.
This is done by measuring metrics like cache
misses, branch misses, code size, etc. The
programs included in the MiBench suite are
categorized into automotive, consumer,
networking, office, security, and telecom.
The programs included in the automotive
subset that were used are:

• Basic Math
• Bit Count
• Qsort
• Susan – Smoothing
• Susan – Edges
• Susan - Corners

These workloads were used in this
experiment to offer some benchmarks closer
to real world usage. Since these systems were
not instrumented to monitor metrics such as

cache misses, the execution times were
analyzed and used as the interested metric.

The GPIO IRQ Latency test kernel module
[14] was ported to work with the ZCU102.
The kernel module is used to configure one
GPIO pin as an output and one as an input
that triggers an IRQ handler when input is
received. This was also combined with an
AXI GPIO block in the FPGA fabric that
allowed connecting the two pins in the fabric
instead of with a wire. This ensured no
environmental impacts could alter the
measurement and improved reproducibility.
The test then simply measures the time
between setting a GPIO pin high and when
the interrupt fires on the input pin.

Cyclic Test [15] is a benchmark developed
under the Linux Foundation for the real time
Linux variant. It “accurately and repeatedly
measures the difference between a thread’s
intended wake-up time and the time at which
it actually wakes up” [15]. This is used as a
proxy measurement for interrupt latency on
x86. The x86 board that was used in this
experiment did not have suitable GPIO pins
that allowed interrupts to be associated with
them in the same way that the ZCU102 did.
Therefore, this benchmark was used because
when the Cyclic Test is run with the
“nanotime” argument, the timer interrupt is
utilized to determine when to wake up the
thread. This measurement is very similar to
what is being achieved on the ZCU102
platform.

3.3 Benchmarking a Hypervisor

The main measurement that is of interest
when benchmarking a hypervisor is overhead
of running natively as opposed to virtualized.
Synthetic benchmarks were used in the study
to show where overheads occurred and break
out the impact to CPU usage, memory usage,
and interrupt latency.

When benchmarking a hypervisor, care
must be taken to ensure that there is little that
differs between the operating system running

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Performance Impacts from the seL4 Hypervisor, Millwood, et al.
Page 8 of 11

DISTRIBUTION A. Approved for public release; distribution unlimited. OPSEC# 4290

natively versus in a virtualized environment.
A CentOS-derived Linux distribution and
PetaLinux help with the software side of this
equation.

For this study the following steps were
performed to collect benchmarking data per
platform:

1. Prepare boot media
2. Boot target with prepared media
3. Boot into either native or virtualized

image
4. Perform tests manually at Bash shell
5. Record results in spreadsheet
6. Repeat steps from step 3 if needed

for other environment.
The spreadsheet was then used to calculate

overheads.
In systems that would be deployed to

security critical environments, or systems
that have more VMs than specific resources,
some devices and resources must be
virtualized. Resource virtualization
introduces its own overhead, which is not
considered by this study. This study is
concerned with the basic overhead associated
with using the CAmkES VMM hypervisor.

4 RESULTS

The percent difference between running
these benchmarks, natively and in a
virtualized environment, are presented in this
section. In every case, performance is worse
in a virtualized environment, so the figures
here show the performance decrement
suffered on the chosen platforms.

4.1 Benchmark Suite: Sysbench

The overheads associated with the
Sysbench benchmarks can be seen in Figure
3 and Figure 4.

Figure 3: x86 Sysbench Overhead Results

Figure 4: ARM Sysbench Overhead Results

There appears to be additional overhead
associated with the x86 platform. On the
ARM platform, there is a maximum of 1.6%
overhead induced by the seL4 VMM. On the
x86 platform, the overheads range from
0.82% to 7% overhead. The difference in
overheads could be due in part to the
difference in seL4 VMM implementations
between the architectures and the less costly
VM exits on ARM.

4.2 Benchmark Suite: MiBench

As mentioned before, the MiBench suite is
intended to be used to provide validation for
microarchitectures in instrumented settings.
In this study the runtime of each of the chosen
MiBench tests was recorded. The overheads

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Performance Impacts from the seL4 Hypervisor, Millwood, et al.
Page 9 of 11

DISTRIBUTION A. Approved for public release; distribution unlimited. OPSEC# 4290

associated with each platform is shown in
Figure 5 and Figure 6.

Figure 5: x86 MiBench Overhead

Figure 6: ARM MiBench Overhead

Again, it is interesting to note that the ARM
platform suffered from significantly less
overhead, compared to the x86 platform.
There was a 1% to 17% overhead when
running the workloads in a virtualized
environment on x86 and only a maximum of
1% overhead on ARM.

4.3 Interrupt Latency

Interrupt latency was measured in different
ways between the platforms due to the
difference in available resources on the
boards. The simple GPIO/Interrupt overhead
results for the ARM ZCU102 board are
shown in Figure 8, while the Cyclic Test
overhead results for x86 board is shown in
Figure 7.

Figure 7: x86 Cyclic Test Overhead

Figure 8: ARM IRQ Latency Overhead

Unlike the previous benchmarks, the x86
and ARM platforms both had very large
overheads with the interrupt latency
measurements, 855% and 851% respectively.
This may look alarming but the actual time
differences are 445µs and 13µs for x86 and
ARM respectively. The overhead associated
with latency overhead here is primarily due
to how the CAmkES VMM handles
interrupts. Every interrupt that occurs, is first
handled by the seL4 kernel, dispatched to the
VMM and then injected into the proper guest
OS.

5 FUTURE WORK

The benchmarking presented in this paper is
a baseline study on the overhead associated
with running a single-guest OS in the
CAmkES VMM on seL4. This can be
expanded upon in many ways. Specifically,
studying how different workloads in a multi-
VM setup affect the performance of the

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Performance Impacts from the seL4 Hypervisor, Millwood, et al.
Page 10 of 11

DISTRIBUTION A. Approved for public release; distribution unlimited. OPSEC# 4290

system and how time-slice settings tie into
this.

The baseline set by this study could also be
used to drive optimizations to servers, the
hypervisor, the scheduler, or components of
the CAmkES VMM. Using this work as a
framework could provide empirical data that
shows how performance changes with
different system improvements and
optimizations.

While DornerWorks ported the CAmkES
VMM project to the ZynqMP and the
particular x86 processor used in this study,
further architectural changes are intended to
be made when the code is up-streamed and
reviewed by Data61. Collaboration with
other members in the seL4 community may
result in higher-performance virtualization
with seL4.

This study focused on two architectures that
are still adding features: x86 and ARM. The
new instruction set architecture (ISA) on the
scene, RISC-V [16] continues to be an
interest to DornerWorks and other DoD
research initiatives. The lack of licensing
requirements for the ISA provides a basis for
collaborative secure computing research and
development. The current ratified RISC-V
privileged ISA contains a draft version of
hypervisor extensions. However, since the
extensions aren’t ratified yet there are not any
silicon or FPGA implementations available.
While a port of the CAmkES VMM has not
occurred yet, RISC-V is a primary focus of
Data61’s verification efforts. Once the
hypervisor extensions are ratified,
benchmarking synthetic and representative
workloads would provide valuable
information to system designers when
considering a virtualized environment based
on a RISC-V platform.

6 CONCLUSION

The baseline benchmarking performed in
this paper can help two main groups of
people: system designers considering an seL4

based hypervisor and developers working on
the CAmkES VMM. System designers can
use these benchmarks to determine if the
performance overheads measured here are
acceptable for their uses. Developers can use
these measurements to guide optimization
efforts.

These benchmarks have shown that for
computation-related overheads such as CPU,
memory, and threads, the CAmkES VMM
adds very little in overhead, while exposing
seL4’s world class isolation mechanisms. For
many applications, this performance
overhead would be worth the assurance and
security gained by building on seL4 and the
CAmkES ecosystem.

DornerWorks has talked about the virtues of
virtualization for many years. These
benchmarks show that the seL4-based
CAmkES VMM hypervisor is a suitable
lightweight and secure solution when paired
with the proper hardware.

7 REFERENCES

[1] C. Chaplain, "Weapon Systems

Cybersecurity: DoD just beginning to grapple
with scale of vulnerabilities," Washington,
DC, USA, GAO Report No. GAO-19-128,
2018.

[2] R. VanVossen, J. Millwood, C. Guikema, L.
Elliott and J. Roach, "The seL4 Microkernel--
A Robust, Resilient, and Open-Source
Foundation for Ground Vehicle Electronics
Architecture," in the Ground Vehicle Systems
Engineering and Technology Symposium.

[3] G. Klein, K. Elphinstone, G. Heiser, J.
Andronick, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski and M. Norrish,
"seL4: Formal verification of an OS kernel,"
in Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles,
2009.

[4] G. Heiser, "The seL4 Microkernel: An
Introduction," 2020.

[5] C. Guikema, "Virtualization on seL4 –
Expanding the CAmkES-ARM-VM," in seL4
Summit, Dulles, VA, 2019.

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Performance Impacts from the seL4 Hypervisor, Millwood, et al.
Page 11 of 11

DISTRIBUTION A. Approved for public release; distribution unlimited. OPSEC# 4290

[6] Data61, "CAmkES ARM VM," Data61,
[Online]. Available:
https://github.com/SEL4PROJ/camkes-arm-
vm.

[7] Data61, "CAmkES VM," Data61, [Online].
Available: https://github.com/seL4/camkes-
vm.

[8] I. Kuz, Y. Liu, I. Gorton and G. Heiser,
"CAmkES: A component model for secure
microkernel-based embedded systems,"
Journal of Systems and Software, vol. 80, no.
5, pp. 687-699, 2007.

[9] I. Kuz, G. Klein, C. Lewis and A. Walker,
"capDL: A language for describing capability-
based systems," in Proceedings of the first
ACM asia-pacific workshop on Workshop on
systems, 2010.

[10] Xilinx, "PetaLinux Product Page," [Online].
Available:
https://www.xilinx.com/products/design-
tools/embedded-software/petalinux-sdk.html.

[11] Xilinx, "Zynq Ultrascale + MPSoC ZCU102
Evaluation Kit Product Page," [Online].
Available:
https://www.xilinx.com/products/boards-and-
kits/ek-u1-zcu102-g.html. [Accessed 2020].

[12] A. Kopytov, "Sysbench Github Repository,"
[Online]. Available:
https://github.com/akopytov/sysbench.
[Accessed 2020].

[13] M. R. Guthaus, J. S. Ringenberg, D. Ernst,
T. M. Austin and R. B. B. Trevor Mudge,
"MiBench Home Page," University of
Michigan, 2001. [Online]. Available:
http://vhosts.eecs.umich.edu/mibench//.
[Accessed 2020].

[14] gkaindl, "Linux GPIO IRQ Latency Test,"
[Online]. Available:
https://github.com/gkaindl/linux-gpio-irq-
latency-test. [Accessed 2020].

[15] C. Williams and J. Kacur, "Realtime:
Cyclictest," The Linux Foundation, May
2016. [Online]. Available:
https://wiki.linuxfoundation.org/realtime/doc
umentation/howto/tools/cyclictest/start.
[Accessed 2020].

[16] A. Waterman and K. Asonovic, The RISC-V
Instruction Set Manual, 20190608-Priv-
MSU-Ratified ed., RISC-V Foundation, 2019.

[17] SuperMicro, "X10SDV-12C+-TLN4F
Product Page," [Online]. Available:
https://www.supermicro.com/en/products/mo
therboard/X10SDV-12C+-TLN4F. [Accessed
2020].

[18] Concurrent Real-Time, "RedHawk Linux
Product Page," [Online]. Available:
https://www.concurrent-
rt.com/solutions/linux/.

	1. INTRODUCTION
	2. HYPERVISOR BACKGROUND
	2.1. Hypervisors
	2.1.1 Type-1 Hypervisor
	2.1.2 Type-2 Hypervisor
	2.1.3 Embedded Hypervisor

	2.2 seL4 VMM
	2.2.1 CAmkES Background
	2.2.2 seL4 VMM Architecture

	3 METHODOLOGY
	Several benchmark suites were used in this study to shed light on the performance overhead of utilizing specific resources in a virtualized environment. Performance overhead is calculated as shown in Equation (1).
	Here, the performance overhead is calculated relative to the baseline, native, and performance. Performance here can be any measurement.
	A Linux image was generated for each platform. The same Linux image was used for the native benchmarks as well as the virtualized one. PetaLinux 2019.2 [10] and a CentOS derived Linux distribution were used to build and install reproducible images tha...
	3.1 Benchmarking Setup
	3.2 Benchmark Suites
	3.3 Benchmarking a Hypervisor

	4 RESULTS
	4.1 Benchmark Suite: Sysbench
	4.2 Benchmark Suite: MiBench
	4.3 Interrupt Latency

	5 FUTURE WORK
	6 CONCLUSION
	7 REFERENCES

