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ABSTRACT 

Hypervisor technologies are often presented as offering a high degree of 
separation at the cost of performance. Is this too expensive for embedded systems? 
The cost of performance has been shrinking year after year as new advancements 
in virtualization technologies are baked into processors. When a hypervisor couples 
hardware assisted virtualization with device emulation, it makes current systems 
portable, future proof, and extends the life of legacy systems.  

seL4 is a perfect fit for the high assurance embedded hypervisor space. The 
open source seL4 microkernel is the first formally verified microkernel built with 
security and performance in mind. The mathematical proof of seL4 provides 
unprecedented assurance at the lowest, most critical software level.  

This paper investigates the overheads associated with using seL4 as a 
hypervisor on ARM and x86 platforms, providing synthetic and real-world 
benchmarking methodology and results.  
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 INTRODUCTION 
United States Department of Defense 

(DoD) programs continue to leverage and 
expand the use of hypervisor technologies to 

harden all manner of computer systems 
ranging from enterprise platforms down to 
embedded cyber-physical systems.  The 
ability to isolate software components and 
partition functionality supports fundamental 
principles for improving the security of a 
system and has the added benefit of enabling 
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hardware consolidation.  Hypervisors serve a 
foundational role for accomplishing this 
while underpinning a defense-in-depth 
approach, and although there is a 
performance penalty incurred with the use of 
hypervisors, modern processor architectures 
are incrementally minimizing this overhead 
and decreasing the impact on the user. 

   DoD weapon system programs are 
increasingly looking to improve the 
robustness of their cyber-physical systems. A  
recent report by the Government 
Accountability Office [1] [2] indicates that 
this is of the utmost importance.  
Traditionally the deployment of embedded 
hypervisors in cyber-physical systems has 
been approached through the acquisition of 
prohibitively expensive proprietary 
embedded hypervisors or microkernels, and 
corresponding certification artifacts, on a per 
project basis.  Procurement of proprietary 
embedded hypervisors and microkernels 
results in vendor-lock and, despite similar 
system requirements, typically does not 
permit DoD agencies to reuse their 
investments.  In the case of ground vehicles, 
and likely for many other applications, the 
cost of embedded hypervisors inhibits many 
commercial and military systems from 
leveraging them simply because they do not 
have the budget to procure these specialized 
products.  The use of embedded hypervisors 
remains reserved for specialized applications, 
such as in aerospace, where the cost can be 
justified. 

   The genesis of the seL4 kernel and the  co-
developed mathematical proofs of 
correctness [3] represent a rare, and 
potentially unparalleled opportunity, for 
commercial and military systems to achieve 
levels of robustness that until now was 
unattainable.  A secure hypervisor is the 
product of combining the seL4 kernel and the 
CAmkES Virtual Machine Monitor (VMM). 
When compared with proprietary offerings, 
the seL4 based CAmkES VMM is open-

source, built on a kernel that claims to be “the 
world’s most secure OS” [4] freely providing 
formal proofs which are potentially stronger 
than those provided in proprietary offerings, 
and also claims to be the “the world’s fastest 
microkernel.”  This combination of attributes 
makes seL4 a candidate for improving the 
security posture of not just military 
components, but commercial products 
including Internet-of-Things (IoT) 
appliances, medical devices, and critical 
infrastructure components to name just a few.  
The open-source nature of seL4, while 
prompting special consideration due to the 
sensitive applications that are targeted, may 
enable reuse and sharing between projects in 
a way that is not usually achievable with 
proprietary products.  The openly published 
and peer-reviewed proofs of correctness 
guarantee the absence of bugs in the formally 
verified components and can be used to 
support system certification against the 
highest level of rigor including the Common 
Criteria for security, DO-178C for airborne 
systems, IEC 62304 for medical device 
software, and IEC 61508 and ISO-26262 for 
road vehicle safety.  This picture is in stark 
contrast with proprietary offerings which 
typically charge additional fees for 
certification artifacts before much can even 
be ascertained about the nature of the 
guarantees they provide. 

Recent work has examined the suitability of 
using seL4 in ground vehicle systems [2] [5].  
Work has been done to port seL4 to 
ruggedized hardware and develop the 
necessary features which range from specific 
guest support to virtualized drivers.  The 
presented work has never analytically 
examined the performance impacts of 
running the seL4 hypervisor in such a system, 
instead relying on preconceived notions, 
subjective measures such as user-
acceptability testing, and qualitative 
assessments of performance inferred from 
virtualization trends in hardware architecture, 
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and known characteristics of the seL4 kernel 
and CAmkES VMM hypervisor itself.  It is 
the objective of this paper to present a 
quantitative analysis of the seL4 hypervisor 
performance overhead that we conducted on 
a commercial ARM embedded device and a 
representative, military-grade embedded 
device. We will also discuss potential impacts 
on cyber-physical system development. 

 
 HYPERVISOR BACKGROUND 
  In the last decade hypervisors have 

proliferated to the level of a commodity 
product in the enterprise space and 
hypervisor technology stands as one of the 
foundational elements for the explosion and 
success of cloud-computing.  The hypervisor 
provides the ability to virtually partition 
hardware and software resources so that 
businesses no longer require dedicated 
hardware and can take advantage of the 
economies of scale offered by the cloud 
computing providers.  The abstraction and 
isolation enabled by hypervisor technology 
has matured to the degree that rival 
businesses can happily be running mission 
critical software on the same cloud server.  
Although there are indeed major differences 
between an enterprise system and a weapons 
platform, there are many similarities in the 
design patterns and benefits that we seek to 
achieve by applying hypervisor technology in 
a weapon system.  For this reason, it is useful 
to discuss hypervisors in a general context 
and how it relates to what we refer to as an 
“embedded hypervisor.” 

 
2.1. Hypervisors 

Hypervisors are fundamentally a layer of 
software that enables multiple guest 
operating systems or processes to run 
alongside each other and share the same 
hardware resources.  The hypervisor, 
sometimes called a Virtual Machine Monitor 
(VMM), manages the guest virtual machines 
(VM) and provides an interface between the 

VMs and the host hardware.  There are two 
broadly recognized types of hypervisors and 
we will introduce a third type, to which we 
consider an seL4-based system to belong. 

 Type-1 Hypervisor 
Also known as bare-metal hypervisors, 

Type 1 hypervisors are relatively small pieces 
of software that generally do not comprise of 
a fully functional operating system by 
themselves.  They are usually more efficient 
because they have direct access to the 
hardware, however they often need a separate 
VM or privileged process integrated to 
monitor and manage the guests. 

 Type-2 Hypervisor 
Sometimes referred to as a “hosted” 

hypervisor, Type 2 hypervisors run as an 
application within the hosting Operating 
System (OS).  Type 2 hypervisors are 
generally easier to use and deploy, however 
they access the underlying hardware 
resources through the host OS and so can 
suffer performance problems and have the 
potential to be compromised by 
vulnerabilities that are inherited from the 
larger, more feature rich, host OS. 

 Embedded Hypervisor 
This type of hypervisor is less widely 

recognized and is generally a subset or 
customization of the Type 1 hypervisor.  
Embedded hypervisors may be used to host 
specialized guests such as Real-Time 
Operating Systems (RTOS) and an example 
configuration is depicted in Figure 1. 

 



Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Performance Impacts from the seL4 Hypervisor, Millwood, et al. 
Page 4 of 11 

DISTRIBUTION A. Approved for public release; distribution unlimited. OPSEC# 4290 
 

 
Figure 1: Typical Type-1 Embedded Hypervisor 

Embedded hypervisors are specially 
tailored for security and performance in real-
time applications. They often need to provide 
hard real-time determinism to the processes 
they run with worst-case execution time 
guarantees.  They may lack some features 
that are baked into enterprise server 
hypervisors in an attempt to shrink attack 
surfaces and keep the code small and 
efficient.  We will also assert, in the context 
of this paper, that this type of hypervisor must 
be small enough, in source lines of code 
(SLOC), that it is feasible to assess fitness for 
purpose to host applications that require high 
levels of robustness for safety and security. 

 
2.2 seL4 VMM 

While seL4 is a microkernel whose main 
purpose is to manage memory, interrupts, 
application threads, and system calls; it also 
provides some interfaces to support running 
VMs. The majority of the code needed for 
virtualization is implemented in user-space 
and is called the VMM. This initializes 
memory and capabilities for the VM and 
provides handlers for various expected faults, 
such as emulated device drivers. The seL4 
microkernel does need some code specific to 
running VMs, which can be configured at 
build time. The user-space VMM code was 
originally implemented as a regular seL4 
application. More recently, it has been re-
implemented as a series of CAmkES 
components by Data61 [6] [7].  DornerWorks 
has added support for the ZCU102 and 64-bit 
x86 military-grade board with the intent of 

contributing upstream. It is important to note 
that the seL4 VMM implementations used in 
this study contain code in performance 
critical areas that DornerWorks developed for 
the porting effort.  

 CAmkES Background 
CAmkES is the Component Architecture 

for Micro-Kernel-based Embedded Systems 
[8]. Developing simple applications on top of 
the seL4 microkernel is somewhat straight-
forward; however, as the size of the 
application becomes larger, the complexity of 
developing on top of seL4 increases 
exponentially. The CAmkES framework 
allows developers to focus on functionality 
without being bogged down by the specifics 
of seL4 and its APIs.  

CAmkES supplies a component-based 
framework by providing an Architecture 
Description Language (ADL) to describe 
software components and the interfaces 
between them. The seL4 microkernel 
guarantees these components are isolated 
from each-other; the only methods to 
communicate between them consist of user-
defined interfaces and shared memory. 
During compilation, the CAmkES tool 
generates initialization code and the glue 
code required to tie the components together 
into a functional system built on seL4 without 
having to directly use any of the seL4 APIs. 
When developing a system without 
CAmkES, a root thread is developed that is 
given access to all of the resources in the 
system. Using system calls, the root thread 
creates and configures other user-space 
threads. It then splits up access to hardware 
resources to those threads and configures 
connections between them. Fault handlers are 
then setup and the threads are started. When 
developing with CAmkES, all of this is done 
with the CapDL Loader application. This 
application is a root thread that takes the 
CapDL [9] generated output from the 
CAmkES configuration to setup the system. 
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Using CAmkES for the user-space, VMM 
implementation makes sense because of the 
inherent modularity. A VMM just needs to 
supply the same features for almost all VMs 
and then it is up to each specific VM what 
applications it runs and how it uses them. It 
also makes it easier to add and remove 
features like servers and companion 
applications. 

 seL4 VMM Architecture 
Due to differences in architecture, the 

VMM uses different library functions and 
methods to provide virtualization support on 
both ARM and x86. 

On ARM, the hardware virtualization 
extensions and Exception Levels (EL) are 
utilized to provide most of the functionality 
that the VM needs. The hardware 
virtualization extensions provide features 
such as, multi-staged Memory-Management 
Unit (MMU) support, virtualized interrupt 
registers, virtualized system timer, hypercall 
support, and EL-based fault handling. This 
provides all of the low-level platform support 
needed to get a virtual machine running 
correctly. The system runs in components in 
different exception levels, as shown in Figure 
1. 

 
Figure 2:CAmkES-based VMM on ARM 

On x86, VT-x is utilized to accomplish the 
same goals. Extended Page Tables (EPT), 
virtualized interrupts (APICv), IOMMU, and 
Peripheral Component Interconnect (PCI) 
pass-through and emulation are all used to 
provide what is needed for a VM. 

For either platform, some devices need to be 
virtualized with software or passed-through. 
Serial devices are generally virtualized since 
one is likely to run more VMs than the 
number of available physical UARTs. This is 
done by trap and emulate. The memory 
regions related to the device are marked for 
no access. When the VM tries to read or write 
from it, a fault is generated. The seL4 
hypervisor catches this fault and branches to 
the correct handler in the VMM thread. This 
handler interfaces with a server that interacts 
with the device on the VM’s behalf. The way 
that these devices are defined for the VM is 
different between architectures. On x86, the 
virtualized device is enumerated to the PCI 
bus so that it can be discovered by the VM. 
On ARM, the device needs to be added to the 
device tree that is compiled and provided on 
boot to the VM.  

On both platforms, hardware virtualization 
is used whenever possible as it will provide 
the best performance possible. When it isn’t 
feasible to use hardware virtualization, such 
as virtualized devices, software virtualization 
is used to give the functionality that is needed 
at the cost of a performance hit. 

 
3 METHODOLOGY 

Several benchmark suites were used in 
this study to shed light on the performance 
overhead of utilizing specific resources in a 
virtualized environment. Performance 
overhead is calculated as shown in Equation 
(1). 

 
𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑒𝑒𝑒𝑒 = 𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣−𝑃𝑃𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣𝑛𝑛

𝑃𝑃𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣𝑛𝑛
∗ 100% ( 1 ) 

 
 Here, the performance overhead is 

calculated relative to the baseline, native, and 
performance.  Performance here can be any 
measurement.  

A Linux image was generated for each 
platform. The same Linux image was used for 
the native benchmarks as well as the 
virtualized one. PetaLinux 2019.2 [10] and a 
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CentOS derived Linux distribution were used 
to build and install reproducible images that 
contained the same benchmark software. The 
two images ran different Linux kernels. The 
PetaLinux image and the CentOS derived 
image used for this study ran different 
versions of Linux kernels. The differences in 
kernel versions is not of concern here since 
advanced features of Linux are not being 
used and the overhead introduced by the 
hypervisor is the real focus of our 
measurement.  Due to hardware and software 
architectural differences, the actual measure 
of impacts between architectures are not what 
is of interest in this paper. This paper uses a 
ratio between the native performance and the 
delay incurred in the virtualized environment 
so that fairer comparisons can be made. For 
each platform, one CPU is virtualized per 
VMM. 

 
3.1 Benchmarking Setup 

The chosen platforms to perform 
benchmarks on were:  

• 64-bit x86 Military-Grade Single 
Board Computer 

• ZCU102 [11] 
o Manufacturer: Xilinx 
o SoC: ZU9EG 

These platforms were chosen because they 
are powerful embedded platforms that could 
be used as development environments for 
military applications. No consideration was 
made to equate these boards in any way, such 
as clock-scaling or any other processor 
configuration. The minimal configurations 
that were performed on the boards were to 
support virtualization, otherwise they were 
used out of the box. The x86 board’s BIOS 
was configured to enable VT-X extensions.  

The boards were both connected to a 
computer via a Prolific serial-to-USB cable. 
The majority of interaction with the boards 
happened over this interface such as issuing 
terminal commands and collecting data. 

Besides flash memory, no other instruments 
or interfaces were used.  

The x86 processor used had multiple cores 
and multiple threads, however only a single 
core was used. A CentOS-derived Linux 
distribution was used on the military grade 
x86 platform. Since the Linux is an RPM 
based distribution, the YUM package 
manager was used to install the benchmark 
software. This was booted with a Syslinux 
configured USB device, which held the 
images for the virtualized and native Linux 
systems. Syslinux menu entries were then 
used so that the operator could choose which 
system to boot into. The power to the system 
was reset in order to switch between running 
the native and virtualized. 

The ARM Xilinx PetaLinux framework 
produced a BOOT.bin file, which contains a 
first stage boot loader (FSBL), U-Boot, and a 
bitstream. The ZCU102 board was booted 
with an SD card that contained the 
BOOT.bin, the virtualized Linux system, and 
the native one. Once the ZCU102 booted to 
the U-Boot prompt, commands were used to 
load the images to the proper memory 
locations and to jump there. The ZCU102 
also required a power reset to run the other 
image. The ZCU102 has 4 ARM Cortex-
A53’s and dual Cortex-R5F’s, however, a 
single A53 was used in this study. The FPGA 
fabric on the ZCU102 allowed connecting 
GPIO pins together in the fabric to facilitate 
simple and accurate interrupt latency 
measurements.  

 
3.2 Benchmark Suites 

Synthetic benchmarks were used here in 
order to target specific system resources. This 
allows us to have a more accurate idea of 
system impacts when running in a virtual 
machine. These benchmarks run workloads 
that otherwise do not have a useful outcome 
in the real world other than causing increased 
usage of a particular system component. 
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Several synthetic benchmarks were chosen to 
offer comparable performance numbers.  

The Sysbench [12] benchmark suite offers 
some resource targeting synthetic workloads 
that are very useful for these comparisons. 
The benchmark sub programs that were used 
in this study were:  

• CPU: Verifies prime numbers 
through division of the number 
between 2 and the square root of the 
number. 

• Memory: Read and writes to an 
allocated buffer multiple times. 

• Threads: A number of threads are 
moved through the run queue by 
locking their mutex and yielding.  

• Mutex: Takes a mutex, increments a 
global number, and releases. 

The Sysbench suite has more workloads 
available but these were chosen so that the 
impact to resources could be compared.  

MiBench [13] is a “free, commercially 
representative embedded benchmark suite” 
that has been put together by the University 
of Michigan. This is not so much a synthetic 
benchmarking suite as it uses real programs 
to produce real workloads. It is meant to be 
used in a simulated environment in order to 
provide validation to microarchitectures. 
This is done by measuring metrics like cache 
misses, branch misses, code size, etc. The 
programs included in the MiBench suite are 
categorized into automotive, consumer, 
networking, office, security, and telecom. 
The programs included in the automotive 
subset that were used are:  

• Basic Math 
• Bit Count 
• Qsort 
• Susan – Smoothing 
• Susan – Edges 
• Susan - Corners 

These workloads were used in this 
experiment to offer some benchmarks closer 
to real world usage. Since these systems were 
not instrumented to monitor metrics such as 

cache misses, the execution times were 
analyzed and used as the interested metric.  

The GPIO IRQ Latency test kernel module 
[14] was ported to work with the ZCU102. 
The kernel module is used to configure one 
GPIO pin as an output and one as an input 
that triggers an IRQ handler when input is 
received. This was also combined with an 
AXI GPIO block in the FPGA fabric that 
allowed connecting the two pins in the fabric 
instead of with a wire. This ensured no 
environmental impacts could alter the 
measurement and improved reproducibility. 
The test then simply measures the time 
between setting a GPIO pin high and when 
the interrupt fires on the input pin. 

Cyclic Test [15] is a benchmark developed 
under the Linux Foundation for the real time 
Linux variant. It “accurately and repeatedly 
measures the difference between a thread’s 
intended wake-up time and the time at which 
it actually wakes up” [15]. This is used as a 
proxy measurement for interrupt latency on 
x86. The x86 board that was used in this 
experiment did not have suitable GPIO pins 
that allowed interrupts to be associated with 
them in the same way that the ZCU102 did. 
Therefore, this benchmark was used because 
when the Cyclic Test is run with the 
“nanotime” argument, the timer interrupt is 
utilized to determine when to wake up the 
thread. This measurement is very similar to 
what is being achieved on the ZCU102 
platform. 

 
3.3  Benchmarking a Hypervisor 

The main measurement that is of interest 
when benchmarking a hypervisor is overhead 
of running natively as opposed to virtualized. 
Synthetic benchmarks were used in the study 
to show where overheads occurred and break 
out the impact to CPU usage, memory usage, 
and interrupt latency.  

When benchmarking a hypervisor, care 
must be taken to ensure that there is little that 
differs between the operating system running 
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natively versus in a virtualized environment. 
A CentOS-derived Linux distribution and 
PetaLinux help with the software side of this 
equation.  

For this study the following steps were 
performed to collect benchmarking data per 
platform:  

1. Prepare boot media 
2. Boot target with prepared media 
3. Boot into either native or virtualized 

image 
4. Perform tests manually at Bash shell 
5. Record results in spreadsheet 
6. Repeat steps from step 3 if needed 

for other environment. 
The spreadsheet was then used to calculate 

overheads.  
In systems that would be deployed to 

security critical environments, or systems 
that have more VMs than specific resources, 
some devices and resources must be 
virtualized. Resource virtualization 
introduces its own overhead, which is not 
considered by this study. This study is 
concerned with the basic overhead associated 
with using the CAmkES VMM hypervisor.  

 
4 RESULTS 

The percent difference between running 
these benchmarks, natively and in a 
virtualized environment, are presented in this 
section. In every case, performance is worse 
in a virtualized environment, so the figures 
here show the performance decrement 
suffered on the chosen platforms. 

 
4.1 Benchmark Suite: Sysbench 

The overheads associated with the 
Sysbench benchmarks can be seen in Figure 
3 and Figure 4.  

 

 
Figure 3: x86 Sysbench Overhead Results 

 
Figure 4: ARM Sysbench Overhead Results 

There appears to be additional overhead 
associated with the x86 platform. On the 
ARM platform, there is a maximum of 1.6% 
overhead induced by the seL4 VMM. On the 
x86 platform, the overheads range from 
0.82% to 7% overhead. The difference in 
overheads could be due in part to the 
difference in seL4 VMM implementations 
between the architectures and the less costly 
VM exits on ARM.  

 
4.2 Benchmark Suite: MiBench 

As mentioned before, the MiBench suite is 
intended to be used to provide validation for 
microarchitectures in instrumented settings. 
In this study the runtime of each of the chosen 
MiBench tests was recorded. The overheads 
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associated with each platform is shown in 
Figure 5 and Figure 6. 

 

 
Figure 5: x86 MiBench Overhead 

 
Figure 6: ARM MiBench Overhead 

Again, it is interesting to note that the ARM 
platform suffered from significantly less 
overhead, compared to the x86 platform. 
There was a 1% to 17% overhead when 
running the workloads in a virtualized 
environment on x86 and only a maximum of 
1% overhead on ARM. 

 
4.3 Interrupt Latency 

Interrupt latency was measured in different 
ways between the platforms due to the 
difference in available resources on the 
boards. The simple GPIO/Interrupt overhead 
results for the ARM ZCU102 board are 
shown in Figure 8, while the Cyclic Test 
overhead results for x86 board is shown in 
Figure 7.  

 
Figure 7: x86 Cyclic Test Overhead 

 
Figure 8: ARM IRQ Latency Overhead 

Unlike the previous benchmarks, the x86 
and ARM platforms both had very large 
overheads with the interrupt latency 
measurements, 855% and 851% respectively. 
This may look alarming but the actual time 
differences are 445µs and 13µs for x86 and 
ARM respectively. The overhead associated 
with latency overhead here is primarily due 
to how the CAmkES VMM handles 
interrupts. Every interrupt that occurs, is first 
handled by the seL4 kernel, dispatched to the 
VMM and then injected into the proper guest 
OS.  

 
5 FUTURE WORK 

The benchmarking presented in this paper is 
a baseline study on the overhead associated 
with running a single-guest OS in the 
CAmkES VMM on seL4. This can be 
expanded upon in many ways. Specifically, 
studying how different workloads in a multi-
VM setup affect the performance of the 
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system and how time-slice settings tie into 
this.  

The baseline set by this study could also be 
used to drive optimizations to servers, the 
hypervisor, the scheduler, or components of 
the CAmkES VMM. Using this work as a 
framework could provide empirical data that 
shows how performance changes with 
different system improvements and 
optimizations.  

While DornerWorks ported the CAmkES 
VMM project to the ZynqMP and the 
particular x86 processor used in this study, 
further architectural changes are intended to 
be made when the code is up-streamed and 
reviewed by Data61. Collaboration with 
other members in the seL4 community may 
result in higher-performance virtualization 
with seL4.   

This study focused on two architectures that 
are still adding features: x86 and ARM. The 
new instruction set architecture (ISA) on the 
scene, RISC-V [16] continues to be an 
interest to DornerWorks and other DoD 
research initiatives. The lack of licensing 
requirements for the ISA provides a basis for 
collaborative secure computing research and 
development. The current ratified RISC-V 
privileged ISA contains a draft version of 
hypervisor extensions. However, since the 
extensions aren’t ratified yet there are not any 
silicon or FPGA implementations available. 
While a port of the CAmkES VMM has not 
occurred yet, RISC-V is a primary focus of 
Data61’s verification efforts. Once the 
hypervisor extensions are ratified, 
benchmarking synthetic and representative 
workloads would provide valuable 
information to system designers when 
considering a virtualized environment based 
on a RISC-V platform.  

 
6 CONCLUSION 

The baseline benchmarking performed in 
this paper can help two main groups of 
people: system designers considering an seL4 

based hypervisor and developers working on 
the CAmkES VMM. System designers can 
use these benchmarks to determine if the 
performance overheads measured here are 
acceptable for their uses. Developers can use 
these measurements to guide optimization 
efforts.  

These benchmarks have shown that for 
computation-related overheads such as CPU, 
memory, and threads, the CAmkES VMM 
adds very little in overhead, while exposing 
seL4’s world class isolation mechanisms. For 
many applications, this performance 
overhead would be worth the assurance and 
security gained by building on seL4 and the 
CAmkES ecosystem.  

DornerWorks has talked about the virtues of 
virtualization for many years. These 
benchmarks show that the seL4-based 
CAmkES VMM hypervisor is a suitable 
lightweight and secure solution when paired 
with the proper hardware.  
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